Kinetics & Dynamics of
Chemical Reactions

Course CH-310
Prof. Sascha Feldmann



Recap from last session

* Collisions with a wall
.. kgT
* collision flux zgg = % (u) = Z;mp [sTm2]
* Effusion
* low pressure, small hole vs. large mean free path —
e effusionrate k L= y p— i /
€ Keffusion = Zcoll 4 = [2mmkgT [s7'] o B | oo

* Knudsen method to measure vapor pressure of liquids



Recap from last session
» Collision rate z, = pa{u,g) = pov2{u)

w_ 1 "
ZA_\/E,DO'

 Mean free path [ =

* number of unscattered molecules as they pass through the
volume of other particles and scatter decays as:
X

n(x) =nyge °P* =nye 1



5.4 Center of mass coordinates

 Useful for collisions, so we derive the coordinate transformatlon
(vA: vB) — (vcm» WAB)

* center of mass velocity v,

* relative velocity w,p

e Position vector of center of mass:
maprat+tmprpg

T —
cm map+mpg

* Velocity of cm? Time derivative:

drem __ Mmavpt+tmpvp

map+mpg



. +
» Center of mass velocity: v, = —A-A-"ETE
ma+tmp
* Subtract this from velocities of molecules to give their relative
velocities in a new center of mass frame (moving coordinate system):

Wy =Vy —VUcm
Wp = Vg —VUcm
e Rewrite:

* Replace w, and wgfor relative velocity:

Vg —Vp =W,y —Wp =Vyp = Wyp
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* What is the sum of all momenta within the center of mass frame?
mawy + mpWp = myuy(Vg — Ve) + Mp(Vp — Vi)
= MyVy + mpg — (My + Mp) V¢
=0 (zero!)

* We can use this to eliminate w, or wy from the

equationw,z = w, — Wy to obtain:

m ma+m
Wyp = Wy + _AWA — MyuyWy 4 i
mp mapmp
1 mgy
mam —_
* Reduced mass: y = — A+nf u
Atmp

e Thus: UWypp — MyWy = —MpgWp
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UWpp = MyuWy = —MpWp

e earlier, we found

e So we can describe the coordinate transformation:

Vg = Ve + UWyp /My
= Vom — UWyp /mB

<
o
|

* Let’s look at the kinetic energy of the system next
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Vg = Ve + UWyp/my

Vp = Vem — UWyp/Mp

* Kinetic energy of the system:

_1 2 1 2
Evin = _ MUy + MgV
2 2
1 .UWAB) 1 ( MWAB)
= - ~-Mp (Vem —
2 my (vcm + my + > "'*B cm mpg

1 2 1 2
E (mA T mB)vcm T E.UWAB + VemnmUWWap — UVemnmUWyp

1 1
~(my + mg)vs, + Euva what do these terms mean?

Ekin, cm T Ekin, AB
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1 1
Exin = 5 (My + mp)vén + - 1vis = Exin em + Ekin, AB

* We can view a collision as the relative motion of the
two molecules superimposed on the center of mass motion:

.
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Center -~
of mass
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Increasing Time

> Uy

What do you
notice?
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* The center of mass velocity remains unchanged after collision!
* [t now corresponds to that of the product molecules C and D

(with potentially changed individual masses from A and B):
. Mmcvc+mpvp

v
cm mc+mp

* Totalmomentum is conserved: m v, + mpvp = myuV, + MyV;p

5

, / / /6 V.n = const.
, u, -1 C.
d > ’ N u(./ L .
\ @1 . we can
Center ~ U@l I ‘ negleCt c.m.
e e aa > - I N ' . .
of mass } > / / D - L _ ‘D motlon N
3 / \,/ _
describing the
4 .
reaction ©
Increasing Time > .




* Kinetic energy of center of mass motion also remains unchanged:
_1 2 _
Exin,em =3 (m, + mg)vs,, = const.

* Can be neglected when describing chemical reactions, so only the
kinetic energy associated with the relative motion is available for

. 1
thereaction:  Eyin AB =, HVip

* Relative velocity may change during collision, but the sum of
relative kinetic energy and internal energy must remain constant:

Einternal, AB * Ekin, AB = Einternal, ¢,D 1 Ekin, cD = const.

&1 e

* note: if Eihternal affected—> inelastic coll.! ( e | . peie
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* Next: we calculate the average relative velocities of the two collision
partners — what distribution do we use for this?

* Product of the Maxwell-Boltzmann distributions of the two
molecules:

f(UAx: Vay,Vaz) VBx)» VBy, sz)dvAxdvAydvAzdexdeydez

rame
3 ** (my + mp)vén + nvip
(m,mg)2 mA”ZAkJF”;B”B
2k T)? e Ava,dvy, dv,,dvg,dvg, dvg,

* Now we move to the center of mass coordinate frame:

(Ucm X vcr% V) vcm z) VABx» UABy: UABZ)deTn xdvcm,ydvcm ZdvAB xdvAB,ydvAB Z
(mAmB)Z (mA+m§l)cchm+uvAB
3 B dvcm,xdvcm,ydvcm,zdvAB,xdvAB,ydvAB,z
(anB T)
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f(vcm x» Vem y» Vem,z» VaBx)» VaBy:» vABz)dvcm xdvcm ydvcm zdvAB deAB,ydvAB Z
MA+mp)vém+uv;
(mAmB)Z A Aoy Vo s A0ap s @V
3 vcm,x vcm,y vcm,z UAB,x vAB,y UAB,Z
(anBT)

* We separate out the center of mass term:

3 1 _(mA"'mB)”%m
—_ Y 2kpT
- (TnAWLB)2 (2rk T)% e B dvcm,xdvcm,ydvcm,z
TKp

* We eliminate that term through integration over all c.m. velocities:

1 _HKvaB
kpT
3 € kB dvABxdvABydvABz
(ZﬂkBT)Z

(ma+mp)vém

00 o) 00 1 —
2kpT —
° f_oo f_oo f_oo 3€ B dvcm,xdvcm,ydvcm,z —
(2mkpgT)2

1

3
(myg+mp)2

Nice! This simplifies things, from 6 down to 3 dimensions ©
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* We simplified the distribution to: .

e 4fBldv,n.dv,p,dv

anBT) ABx“YAB,y“VYAB,z

e Like we did before for the Maxwell-Boltzmann distribution derivation, we
now transform to spherical coordinates:

f ( VaBx) VABy: UABZ)dVAB,deAB,deAB,z - (

3 Iw,zq B

F(Vap, ¢, 0)dv,sddpdd = ( i )2 v2.e” 2%8T sin @ dv,dpdo

2ntkgT
* Now we integrate over the angles (as isotropic) and obtain:

3 valzq B

- _
f(Wap)dvap = 477( = ) vip e BTdv,p
2ntkgT

Distribution of the relative speed v,z of two molecules

e |ts expectation value is: (v,5) = V2(v,) form; =m, =m andu =m/2
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5.5 Dynamics of bimolecular collisions -
Reactive hard spheres model

* We had derived the collision rate per unit volume of two molecules

Zyg = O4p{UaR)PAPE
e |[F all collisions would lead to a reaction, then

—% = —Z_l; = Zap = Oup{Uap) PaPB
* Then my rate constant would be just like k, [A][B]
k(T) = opp{usp)

8kpT
U

da+dp

2
) we would obtain:

But what’s wrong
with this rate
i constant...?!

e with (uyg) = and o, = n(

dA+dB)2 8kgT

k(T) = o4p(usp) = 7T( >
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5.5 Dynamics of bimolecular collisions -
Reactive hard spheres model

But what’s wrong
with this rate
constant...?!

dA+dB)2 8kgT
2 Tu

k(T) = aaptuan) = (

* 1) Not every collision leads to a reaction
- we likely overestimate our rate here

* 2) What did we find experimentally before in the course for the
temperature dependence?

- Arrhenius eq. like behavior

Above: k(T) o T vs  Arrhenius: k(T) « e Eact/kBT

Let’s try to get better than this! 21



* To get better, let’s take into account the energy of a particle for its
probability to successfully collide under reaction:

k(T) = oap(Uap) -2 k(T) = (o4 (E) uap)

* Let’s also take into account that the reactivity depends on the
collision geometry: we introduce an impact parameter b

* We still assume 2 molecules are spheres, and use the center of mass
frame, so ignore v.,,, and only consider the relative velocity v g = v

* Theirenergy is E = %,uvz with reduced mass u
* Their minimum distance for collision is d = %(dA + dg) from the c.m.
origin
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‘UAB =7 and d —_ %(dA + dB)

* Decompose into components: vy and v

* Angle 8 betweenvand v,

* Only v, candrive reaction!

* Let’s accordingly decompose

the kinetic energy as
1 1
E = E.‘wu2 Eﬂvi =Ly +E;
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‘UAB =D and d — %(dA + dB)
cOnly E, = %,uvf relevant for reaction

* Introduce impact parameter b
* The larger b is, the smaller v, becomes
* To maximize v, , make b small

- more “head-on” collision

* For the energy fraction we find:

E, _ vl _ 2
?_U_Z_COSH A
. b?
=1-sin“0=1——
d2
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E 2 b2
L =2L=c0s?0=1-sin?6=1-—

E  v2 d?
* For a collision, we need a minimum energy E*
!
2
+ So Ele(l—d—)>E

* The reaction probability then is:

(0 ifE, <E*
PR(EL)_{p ifE, > E*

* The probability p we can call

the steric factor

(like a fit parameter)

* How does a plot of Py (E, ) look like?
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I
2

E=E(1-2)>F

d2
(0 ifE, <E”*
Pr(EL) _{p ifE, > E*
Pr(E,)
pI
- E

E* +

does not look super realistic,
but it’s a start...
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* Let’s define a reaction cross section oiz(E), taking into account the
necessary energy for a reactive collision:

* The surface area A of an infinitesimally thin ring is
A =2mb db
with radius b and thickness db

db

* Integrating over all b where a

reaction can occur, yields

A
og(E) = [" Pg(E,) - 2mb db u
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