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Recap from last session
• Collisions with a wall

• collision flux   !coll =
!
" # = #!$

%&	( $             [s-1m-2]

• Effusion
• low pressure, small hole vs. large mean free path
• effusion rate %effusion = !coll	0 =

)*
%&(#!$

        [s-1]

• Knudsen method to measure vapor pressure of liquids
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Recap from last session
• Collision rate !* = $1 #*+ = $1 2 #
   = 2$1 ,#!$

&( = $1 ,#!$
&-

• Mean free path 3 = .
/"
= 0

%!1   [m]

• number of unscattered molecules as they pass through the 
volume of other particles and scatter decays as:

4(6) = 42831!4 = 4283
4
5
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5.4 Center of mass coordinates
• Useful for collisions, so we derive the coordinate transformation:

9*, 9+ → (96( , <*+)
• center of mass velocity 96(
• relative velocity <*+  

• Position vector of center of mass:

  =6( = ("7"8(!7!
("8(!

• Velocity of cm? Time derivative:

  97#$
9: = 96( = (";"8(!;!

("8(!
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• Center of mass velocity: 96( = (";"8(!;!
("8(!

• Subtract this from velocities of molecules to give their relative 
velocities in a new center of mass frame (moving coordinate system):

 <* = 9* − 96(
 <+ = 9+ − 96(

• Rewrite:
  9* = 96( +<* ,    9+ = 96( +<+  

• Replace <* and <+for relative velocity:
  9* − 9+ = <* −<+ = 9*+ = <*+
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• What is the sum of all momenta within the center of mass frame?
    @*<* +@+<+ = @* 9* − 96( +@+ 9+ − 96(
    =	@*9* +@+9+ − @* +@+ 96(
				= A (zero!)
• We can use this to eliminate <*  or <+  from the
   equation <*+ = <* −<+  to obtain:

  <*+ = <* + ("
(!

<* = @*<* ("8(!
("(!

 

• Reduced mass: B = ("(!
("8(!

 

• Thus: B<*+ = @*<* = −@+<+  
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B<*+ = @*<* = −@+<+  

• earlier, we found
  9* = 96( +<* ,     9+ = 96( +<+  

• So we can describe the coordinate transformation:

  9* = 96( + B<*+/@* 
  9+ = 96( − B<*+/@+  

• Let’s look at the kinetic energy of the system next
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 9* = 96( + B<*+/@* 
  9+ = 96( − B<*+/@+  

• Kinetic energy of the system:

 Dkin =
0
%@*9*% + 0

%@+9+%

= 0
%@* 96( + -<"!

("

%
+ 0

%@+ 96( − -<"!
(!

%

 = 0
% @* +@+ F6(% + 0

% BG*+
% + 96(B<*+ − 96(B<*+  

 = 0
% @* +@+ F6(% + 0

% BF*+
%  what do these terms mean?

 = Dkin, cm + Dkin, AB
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E=>? = 0
% @* +@+ F6(% + 0

% BF*+
%  = Dkin, cm + Dkin, AB

• We can view a collision as the relative motion of the
   two molecules superimposed on the center of mass motion:
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What do you
notice?



• The center of mass velocity remains unchanged after collision!
• It now corresponds to that of the product molecules C and D
   (with potentially changed individual masses from A and B):

    96( = (%;%8(&;&
(%8(&

 

• Total momentum is conserved: @@9@ +@A9A = @*9* +@+9+  
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96( = LM4NO.

we can 
neglect c.m. 
motion in 
describing the 
reaction J



• Kinetic energy of center of mass motion also remains unchanged:

    Dkin,	cm = 0
% @* +@+ 96(% = LM4NO. 

• Can be neglected when describing chemical reactions, so only the 
kinetic energy associated with the relative motion is available for 
the reaction: Dkin,	AB =

0
% B9*+

%  

• Relative velocity may change during collision, but the sum of 
relative kinetic energy and internal energy must remain constant:

  Dinternal, A,B + Dkin, AB = Dinternal, C,D + Dkin, CD = LM4NO. 

• note: if Dinternal affectedà inelastic coll.!
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• Next: we calculate the average relative velocities of the two collision 
partners – what distribution do we use for this?
• Product of the Maxwell-Boltzmann distributions of the two 

molecules:
  V F*4 , F*B , F*/ , F+4 , F+B , F+/ WF*4WF*BWF*/WF+4WF+BWF+/

= @*@+
C
%

2X%+Y C 8
3("D"'8(!D!'

%#!$ 	WF*4WF*BWF*/WF+4WF+BWF+/
• Now we move to the center of mass coordinate frame:
V F6(,4 , F6(,B , F6(,/ , F*+4 , F*+B , F*+/ WF6(,4WF6(,BWF6(,/WF*+,4WF*+,BWF*+,/

= @*@+
C
%

2X%+Y C 8
3 ("8(! D#$' 8-D"!'

%#!$ WF6(,4WF6(,BWF6(,/WF*+,4WF*+,BWF*+,/
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V F6(,4 , F6(,B , F6(,/ , F*+4 , F*+B , F*+/ WF6(,4WF6(,BWF6(,/WF*+,4WF*+,BWF*+,/

= @*@+
C
%

2X%+Y C 8
3 ("8(! D#$' 8-D"!'

%#!$ WF6(,4WF6(,BWF6(,/WF*+,4WF*+,BWF*+,/

• We separate out the center of mass term:

 = "!""
!
" #

$%&#'
!
"
#(

$%&$# '($"
")#* $%)*,,$%)*,-$%)*,. #

$%&#'
!
"
#(

+'%#"
")#*$%!",,$%!",-$%!",. 	

• We eliminate that term through integration over all c.m. velocities:

•  ∫3F
F ∫3F

F ∫3F
F 0

%&#!$
(
'
83

$")$! *#$'
'+!, WF6(,4WF6(,BWF6(,/ = 0

("8(!
(
'

 Nice! This simplifies things, from 6 down to 3 dimensions J 
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• We simplified the distribution to:

! 	#!"# , #!"$, #!"% %#!",#%#!",$%#!",% =
'

2)*"+

'
( ,)

*+/01
(,0-%#!",#%#!",$%#!",%

• Like we did before for the Maxwell-Boltzmann distribution derivation, we 
now transform to spherical coordinates:

 V 	F*+ , [, \ WF*+W[W\ = -
%&#!$

(
' F*+% 8

3-*"!
'

'+!, sin \ WF*+W[W\
• Now we integrate over the angles (as isotropic) and obtain:

   V F*+ WF*+ = 4X -
%&#!$

(
' F*+% 	8

3-*"!
'

'+!,WF*+
    Distribution of the relative speed F*+  of two molecules
• Its expectation value is: F*+ = ^ F*  for @0 = @% = @  and B = @/2
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5.5 Dynamics of bimolecular collisions – 
Reactive hard spheres model
• We had derived the collision rate per unit  volume of two molecules
     !*+ = 1*+ #*+ $*$+  
• IF all collisions would lead to a reaction, then
     − !"

9: = − !!
9: = !*+ = 1*+ #*+ 	 $*$+

• Then my rate constant would be just 
     % Y = 1*+ #*+
• with #*+ = ,#!$

&-   and 1*+ = X 9"89!
%

%
 we would obtain:

   % Y = 1*+ #*+ = X 9"89!
%

%
_ ,#!$

&-
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But what’s wrong 
with this rate 
constant…?!

like %%	 0 [a]



5.5 Dynamics of bimolecular collisions – 
Reactive hard spheres model

 % Y = 1*+ #*+ = X 9"89!
%

%
_ ,#!$

&-
• 1) Not every collision leads to a reaction
 à we likely overestimate our rate here
• 2) What did we find experimentally before in the course for the 

temperature dependence?
  à Arrhenius eq. like behavior

Above: % Y ∝ Y vs Arrhenius: % Y ∝ 83G.#//#!$  

21

But what’s wrong 
with this rate 
constant…?!

Let’s try to get better than this!



• To get better, let’s take into account the energy of a particle for its 
probability to successfully collide under reaction:

    % Y = 1*+ #*+  à  % Y = 1*+ D 	#*+

• Let’s also take into account that the reactivity depends on the 
collision geometry: we introduce an impact parameter d

• We still assume 2 molecules are spheres, and use the center of mass 
frame, so ignore 96(  and only consider the relative velocity 9*+ = 9  

• Their energy is D = 0
% BF

%  with reduced mass B	
• Their minimum distance for collision is W = 0

% (W* + W+) from the c.m. 
origin
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  9*+ = 9  and  W = 0
% (W* + W+)

• Decompose into components: 9∥ and 9J 

• Angle \ between 9 and 9J

• Only 9J can drive reaction!

• Let’s accordingly decompose
   the kinetic energy as 

   D = 0
% BF∥

% + 0
% BFJ

% = D∥ + DJ 
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  9*+ = 9  and  W = 0
% (W* + W+)

• Only DJ = 0
% BFJ

%   relevant for reaction

• Introduce impact parameter d
• The larger d is, the smaller 9J becomes
• To maximize 9J , make d small
 à more “head-on” collision

• For the energy fraction we find:
G0
G = D0'

D' = cos% \
								= 1 − sin% \ = 1 − K'

9'

W

\
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G0
G = D0'

D' = cos% \	= 1 − sin% \ = 1 − K'
9'

• For a collision, we need a minimum energy  D∗ 

• So  	DJ= D 1 − K'
9'  ≥ D∗

• The reaction probability then is:

   gM DJ = h0	j 	
if	DJ < D∗
if	DJ ≥ D∗

• The probability l we can call
                      the steric factor
                   (like a fit parameter)

• How does a plot of gM DJ  look like?

W

\

!
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 	DJ= D 1 − K'
9'  ≥ D∗

       gM DJ = h0	j 	
if	DJ < D∗
if	DJ ≥ D∗

W

\

!

DJ

gM DJ

D∗
does not look super realistic,
but it’s a start…

j
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• Let’s define a reaction cross section 1M(D), taking into account the 
necessary energy for a reactive collision:
• The surface area 0 of an infinitesimally thin ring is
   A = 2Xd	Wd 
   with radius d and thickness Wd

• Integrating over all d where a
   reaction can occur, yields
 1M D = ∫2

FgM DJ ⋅ 2Xd	Wd 

W

\

d

Wd


